Real-Time Lens Blur Effects and Focus Control

Sungkil Lee!
IMax-Planck-Institut fiir Informatik

Elmar Eisemann'-2 Hans-Peter Seidel!*
2 Télécom ParisTech/CNRS-LTCI/Saarland University

Figure 1: Example images rendered in real time by our method. We achieve near-accurate depth-of-field effects, including lens aberrations
(e.g., spherical aberration, (a)). The efficiency of our method makes it well-suited for artistic purposes and we support complex simulations like
tilt-shift photography (b). Further, our system offers an intuitive control of depth of field and we extend the physical model (c) to achieve an
expressive, yet convincing result (d) (here, the background statues stay focused).

Abstract

‘We present a novel rendering system for defocus blur and lens effects.
It supports physically-based rendering and outperforms previous ap-
proaches by involving a novel GPU-based tracing method. Our
solution achieves more precision than competing real-time solutions
and our results are mostly indistinguishable from offline rendering.
Our method is also more general and can integrate advanced sim-
ulations, such as simple geometric lens models enabling various
lens aberration effects. These latter is crucial for realism, but are
often employed in artistic contexts, too. We show that available
artistic lenses can be simulated by our method. In this spirit, our
work introduces an intuitive control over depth-of-field effects. The
physical basis is crucial as a starting point to enable new artistic ren-
derings based on a generalized focal surface to emphasize particular
elements in the scene while retaining a realistic look. Our real-time
solution provides realistic, as well as plausible expressive results.

CR Categories: 1.3.3 [Computer Graphics]: Image Generation

1 Introduction

Real cameras have an aperture through which light falls on an image
plane containing receptors to register an image. For a sharp image,
a small aperture is preferable, but then less light would hit these
sensors and diffraction becomes an issue. Using a larger aperture in
combination with a lens, 3D points at a certain focal distance are
projected to a single point on the sensors, while other points map to
a circle of confusion (COC) [Potmesil and Chakravarty 1981]. The
latter effect leads to blur and only within a certain distance range,
the depth of field (DOF), the image is crisp. DOF dramatically

*email: slee/hpseidel @mpi-inf.mpg.de, eisemann @telecom-paristech.fr

ACM Reference Format

Lee, S., Eisemann, E., Seidel, H. 2010. Real-Time Lens Blur Effects and Focus Control.
ACM Trans. Graph. 29, 4, Article 65 (July 2010), 7 pages. DOI = 10.1145/1778765.1778802
http://doi.acm.org/10.1145/1778765.1778802.

Copyright Notice

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage

and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.

© 2010 ACM 0730-0301/2010/07-ART65 $10.00 DOI 10.1145/1778765.1778802
http://doi.acm.org/10.1145/1778765.1778802

improves photorealism and depth perception [Mather 1996]. It also
has become an important aspect for semantic purposes by drawing
attention to certain elements while maintaining a realistic look.

This paper presents an efficient solution to approximate the image-
capturing process by considering not only aperture but also aspects of
the lens interaction itself. We approximate optical aberrations, which
is a unique feature for real-time approaches. Sometimes considered
an artifact, they are crucial for realism and allow us to reproduce
many features often employed in artistic photos (Figure 1(a)). To
achieve these effects our algorithm needs a certain generality that
is also underlined by support for specialized configurations, e.g.,
tilt-shift photography where lens and image plane no longer align
(Figure 1(b)). Our work enables us to interactively explore this large
variety of possibilities and even outperforms competing methods.
Our goal is to enable artists and designers to enhance, emphasize,
and layout a scene or animation to better match their intentions. In
this context, efficiency is an important aspect, but also controllability.
‘We propose an intuitive interaction for physical and non-physical
effects. In particular, we are concerned with focus, which is the
most crucial component. Our interface enables even novice users to
produce convincing results (Figure 1(d)).

Precisely, the contributions of our paper are as follows:
e An efficient algorithm for DOF and lens blur effects;
e An interactive and intuitive focus control system;
o A generalized method for expressive DOF rendering.

The rest of this paper is structured as follows. We review previous
work (Section 2), before discussing our lens model and rendering
algorithm (Section 3). Many optical aberrations come directly from
the lens simulation and we motivate their use (Section 4). We illus-
trate our focus-control method and extend it to expressive rendering
(Section 5). Finally, we discuss and present performance results
(Section 6), before concluding (Section 7).

2 Previous Work

Many techniques exist to generate focal imagery in graphics, but
the results were often of low quality or far from real time. The lack
of high-quality interactive rendering methods might be one of the
reasons why little work addressed focus manipulation, despite the
increased awareness that previsualization and control are crucial for
productions and instant feedback is central in this context. DOF
is well-suited for abstraction: one can guide perception, enhance

ACM Transactions on Graphics, Vol. 29, No. 4, Article 65, Publication date: July 2010.

65:2 . S. Leeetal.

and emphasize areas of interest, reduce the complexity of a scene
(making it more understandable), or achieve dramatic appearances
beyond physical boundaries. Previously, interactive solutions usually
failed to reproduce realistic results, provided only a small range of
parameters with limited possibilities, and generalizations lacked
plausibility. We obtain a more general near-accurate simulation and
a physical basis for artistic effects.

DOF Rendering Most real-time DOF methods postprocess a sin-
gle image shot from the center of the lens. Filters are used to approx-
imate COCs at each pixel [Rokita 1996; Riguer et al. 2003; Hensley
et al. 2005; Bertalmio et al. 2004; Hammon 2007; Zhou et al. 2007;
Kosloff et al. 2009; Lee et al. 2009b] leading to high performance
but also artifacts such as intensity leakage (color bleeding in the
background) or depth discontinuity. Anisotropic filtering [Bertalmio
et al. 2004; Lee et al. 2009b] or spreading [Kosloff et al. 2009] can
address this issue partially. Alternative scatter methods [Potmesil
and Chakravarty 1981] transform pixels into COC sprites, but the
necessary back-to-front sorting of the sprites makes it applicable
mostly to offline rendering [Demers 2004].

In general, a single image misses information about surfaces hidden
from the lens center which has a large impact on the final image. One
way of hallucinating missing geometries is to split the single image
into depth layers and extend the colors on each layer into the hidden
areas [Barsky et al. 2002; Kass et al. 2006; Kraus and Strengert
2007; Kosloff and Barsky 2007]. However, such extrapolation does
not reflect true scene information and can lead to overly-blurred and
incorrect results, especially for out-of-focus foreground elements.
Further, fusing layers via alpha blending is a coarse approximation.
Such approaches work only for separate objects. Usually, discretiza-
tion artifacts can only be mitigated with image processing [Barsky
et al. 2005], information duplication [Kraus and Strengert 2007], or
depth variation [Lee et al. 2008].

Multiview accumulation can treat visibility correctly, via ray trac-
ing [Cook et al. 1984] or rasterization [Haeberli and Akeley 1990].
Since each scene rendering induces a heavy cost, these methods are
usually inappropriate for real-time use. The accumulation buffer
method [Haeberli and Akeley 1990] further forces several constraints
on ray directions, making it difficult to extend it to general lens mod-
els. A recent method [Lee et al. 2009a] combines both elements.
A single render step derives a layered representation on which an
image-based raytracer is executed. The algorithm is efficient and
achieves quality comparable to accurate methods. However, for our
expressive scenario where highly anisotropic blur can occur, it shows
reduced performance. Many layers are needed to bound errors, in-
creasing memory consumption and making artifacts more common.
Our approach works in the same spirit but is more efficient (even for
standard lenses), is better adapted to the expressive purpose, scales
better for smaller amounts of layers, and incorporates advanced lens
effects that no other real-time solution provides.

User Control, Semantics, and Generalized DOF Creating im-
ages from 3D models imposes challenges. Instead of directly inter-
acting with the appearance of an object, as is the case for painting,
final results are defined indirectly via rendering parameters. With
the increasing complexity of physical simulations, there is a need for
intuitive controls over the parameters to ease the realization of de-
sired results, especially for novice users. Further, there is a tendency
to extend physical models while maintaining a plausible outcome.

Nowadays, intuitive interaction for lighting design is common and
a survey can be found in [Patow and Pueyo 2003]. But other areas
have been explored, including highlights and shadows [Poulin and
Fournier 1992; Pellacini et al. 2002], camera placement [Gleicher
and Witkin 1992], materials [Pellacini and Lawrence 2007], or
indirect illumination [Schoeneman et al. 1993]. Usually, the physical

ACM Transactions on Graphics, Vol. 29, No. 4, Article 65, Publication date: July 2010.

simulation acts as an entry point for artists to refine the appearance.
Similarly, we allow both; a simple interaction for defining physical
and physically-inspired effects.

In the context of lens effects, little work exists. Kosara [2001]
proposed a semantic DOF visualization. The work proves the poten-
tial of a controlled DOF, but is a 2D process, making results often
unrealistic. Bousseau [Bousseau 2009] used filtering methods on
lightfields to replace aperture effects. It abstracts filtering, but not
the optical system, and offers no local control. Kosloff [2007] speci-
fies blurring degrees for 3D points and uses heat diffusion, but the
outcome lacks plausibility. Our approach delivers often-convincing
results. We support almost-accurate physical simulations and ad-
dress dynamic scenes. In particular, we enable a large variety of
DOF blur crucial for artistic purposes. For instance, we support
tilt-shift photography without costly rendering [Barsky and Pasztor
2004] and offer real-time feedback coupled with an intuitive control.
This technique produces focal planes that are not perpendicular to
the lens and has, recently, received much attention due to its strong
defocus blur that can produce a miniature look (Figure 1(b)).

3 Realistic Real-Time Lens Blur

In this section, we explain our lens model and assumptions, before
presenting the efficient rendering algorithm for DOF and lens effects.

spherical lens o)

=LV}

Figure 2: Simulation of a spherical lens. For most lenses, rays do
not converge exactly in a point, especially at off-axial sensors.

Our Lens Model The purpose of a lens is to refocus ray bundles
on the image plane. Depending on its application area, the lens’
shape is designed accordingly [Smith 2004]. Designers often rely on
path tracing to predict lens qualities by tracing rays from an image
sensor through the lens system into the scene [Kolb et al. 1995].

image plane

Our real-time simulation uses geometric shape and refractive index
of alens. Consequently, many aberrations are captured from the lens’
shape which influences the refraction when rays enter and exit the
lens according to Snell’s law. For spherical lenses, the outgoing rays
can be computed accurately, involving a small constant overhead.
Lens aberrations, such as spherical aberration and curvature of field
(Section 4), arise naturally from this simulation, but have previously
been neglected in real-time methods. Furthermore, we do not assume
ray coherence in form of a perspective-projection center which many
previous approaches required for efficiency. Our limitation is that
we assume rays to refract exactly twice when traversing the lens and
to travel along straight paths inside the lens (Figure 2). Hereby, we
ignore diffraction and reflected rays.

3.1 Our Rendering Algorithm

Our algorithm works in two steps. First, we derive an image-based
layered representation of the scene using a modified depth-peeling
strategy. Second, for each sensor (pixel) we trace several rays. We
compute the interaction with the aperture and then use a ray tracing
to find scene intersections. The ray contributions are accumulated to
generate the final image.

Layer Construction via Efficient Depth Peeling We avoid test-
ing lens rays against an actual scene and, instead, derive a layered
image-based representation via depth peeling [Everitt 2001] from
the lens’ center. Depth peeling is a multi-pass technique. Each
pass peels off one layer of the scene; i.e., in the 3°" pass, each pixel
captures the i*"-nearest underlying surface by culling all geometry
nearer than the z-buffer of the previous pass. The termination of the
peeling is detected via occlusion queries.

A faster peeling exists [Liu et al. 2009]. However, to accelerate our
ray tracing step, it is more crucial to reduce the number of layers.
We use two important observations. First, layer pixels that cannot
be reached by any lens rays do not need to be extracted. Second,
a depth-peeled representation is point-sampled at the pixel centers,
which leaves room for interpretation of the actual geometry.

pixel size (s)
-

extended
umbra

extNsion

Figure 3: We can use an offset during depth peeling to omit surfaces
hidden behind already extracted pixels. Extended pixels lead to more
occlusion by exploiting point-sampling ambiguities.

Given a pixel P captured by a ray r through a pixel center, P blocks
some region in space from all lens rays (Figure 3). If one thinks
of the lens as a light source, this space corresponds to the shadow
umbra. No lens ray can intersect any sample captured by r inside
this umbra. Hence, during depth peeling, instead of culling against
the depth of the previous pass, we offset the previous depth by the
distance r travels inside the umbra.

Culling can be improved further by virtually extending a captured
pixel to the neighboring pixel centers. It is important to notice
that such an extension would not affect the depth peeling process
(surfaces are captured exactly at the pixel centers) and, consequently,
the standard depth peeling would deliver the same layers. Using
these virtually increased umbra regions, the final offset « that we
apply is given by: = = %.

With our umbra method and a standard camera (FOVY=30°,
dNear=1m, dFar=c0, lens radius = 9mm, resolution = 800x600), 10
layers are always enough (independently of the scene). In practice,
3-7 layers are common. Considering larger connected regions did
not result in a performance gain. Our solution remains artifact-free,
when assuming silhouette pixels to be extended in this way during
our ray tracing.

Computing Lens Rays Our ray tracing starts on a sensor from
where many rays are shot. These are blocked according to the
aperture and transformed via the lens into a lens ray that is then
tested against the scene layers.

The lens is defined by two height-field surfaces—one for each side—
and we can combine the intersection test of the aperture and the
first lens surface. At each intersection point, the ray is refracted
according to the lens’ refraction index. Alternatively, for algebraic
surfaces, we can solve the intersections analytically; e.g., spherical
lenses are common in reality due to their relatively cheap physical
construction.

Efficient Intersection Test For the moment, let’s assume a single
depth layer and a lens ray to test for intersection against this layer.
Naively, this involves stepping over all pixels in the layer’s image

Real-Time Lens Blur Effects and Focus Control . 65:3

footprint view

max distance ‘
™~

Sideview of 3D Configuration

near plane
lens ray

Figure 4: Instead of searching along the entire ray, we can clamp
the ray by min/max depth extents. The process can be repeated for
the resulting segment.

plane underneath the 2D projection of the ray which we call footprint.
If the footprint is large, the intersection test is costly. We can reduce
it by computing the minimum and maximum depths of the layer
(e.g., via mipmapping). Intersections can only happen within this
depth range, so we can clamp the original ray into these extents.
The resulting 3D segment has a smaller footprint (Figure 4) and
less pixels need consideration. Similarly, given the min/max depths
underneath the new footprint, we can repeat the process to further
narrow down the search region. After a few iterations, the remaining
pixels are tested one by one to find an intersection.

Reducing the search region per ray is costly. Instead, we treat all lens
rays in parallel. This implies two challenges, addressed hereafter:
Deriving a bounding footprint for all lens rays in a depth interval
and computing the min/max values in a footprint region.

Bounding the Footprint For a thin-lens model [Potmesil and
Chakravarty 1981], the footprint of all rays for a given depth d is
the circle of confusion (COC). To bound the footprint for a depth
interval [d1, d2], it is enough to take the maximum of the COCs at
dy and ds. Simple closed-form solutions [Potmesil and Chakravarty
1981] make the computation efficient.

For a geometric lens, apart for particular cases, closed form solutions
are complex. Nonetheless, we deal with a finite number of lens rays
and each ray can easily be clamped to a depth range. To bound the
footprint of all rays for a given depth interval [d1, d2], we intersect
each ray with planes at distance d1 and d2. We collect the intersec-
tion points and compute a bounding quad in image space that we use
as an approximate footprint. Given this bounding quad, we compute
the underlying min/max depth values (as detailed hereafter) and
repeat the process; we clamp all rays and compute a new bounding
quad. Three iterations are a good trade-off between gain and cost
of this step. Although it might sound expensive, our ray tracing is
data-bound, leaving room for such arithmetic. The shown examples
evaluate all lens rays, but 1/4 is sufficiently accurate in practice.

Computing Min/Max Values Given a footprint, we use N-
buffers [Décoret 2005] to determine the minimum and maximum of
the covered values. N-Buffers are a set of textures {7 } of identical
resolution. 7Ty is the original image and a pixel P in T} contains
the minimum and maximum value of Tp inside a square of size
2" x 2" around P. We cover the footprint rectangle using four tex-
ture lookups, corresponding to overlapping squares [Décoret 2005].
The hierarchical N-Buffer construction (751 uses 73) is fast, but
N-Buffers are memory intensive. Our solution is to use a mipmap
texture and an N-Buffer applied to a downsampled version (e.g.,
1/4%" resolution) of the original layer. The memory gain and con-
struction speedup correspond to a factor of four, while small regions
can be sampled efficiently using the mipmap or the original image.

There is one catch. Some pixels, especially in latter layers, can be
empty, do not capture any information, and need to be excluded
during the min/max N-Buffer construction. To mark missing data,

ACM Transactions on Graphics, Vol. 29, No. 4, Article 65, Publication date: July 2010.

65:4 . S. Leeetal.

we use the depth value zero. Before depth peeling, we clear the z-
buffer to zero. During the peeling step, we exclude the output depth
zero. Consequently, this value indicates that no data was output.

Multi-Layer Packing We accelerate multiple layer treatment by
packing four depth values into a single RGBA texture directly after
the peeling step. It allows us to scan four layers in parallel, similarly
to [Policarpo and Oliveira 2006]. These layers share one N-Buffer,
where T is set to the per-pixel minimum and maximum of these
layers. The intervals are still narrowed down quickly because lens
rays are almost perpendicular to the image plane. Finally, we test
all four depth values (recovered by a single lookup) simultaneously
while stepping along the segment. Once the closest intersection is
found, the corresponding color is retrieved.

No layer can be skipped because depth peeling does not order primi-
tives globally, but it gives a local order in each pixel. Hence, once a
pixel is empty, it remains empty for all following layers leading to
large empty zones which are detected efficiently by the N-Buffer.

4 Optical Aberrations

Our geometric lens model captures many optical aberrations which
are present in real cameras and particularly visible when the aper-
ture is fully opened. Although manufacturers try to counterbalance
aberrations by employing a lens set, their simulation is crucial for re-
alistic and artistic effects (e.g., LensBaby™ exaggerates aberrations
to provoke a certain appearance). We will review three cases (refer
to [Smith 2004] for more examples) that we consider of interest due
to their strong effects and relatively common usage in artistic shots.

Spherical Aberration In contrast to a theoretical thin lens, spher-
ical lenses do not perfectly focus all sensor rays in a single focal
point; usually, rays are more strongly bent on the lens periphery.
Biconvex and aspheric lenses, like the human cornea, can reduce this
effect. Visually, spherical aberration manifests in a general blur and
discrepancy of sharpness and brightness of the image. This allows
us to derive a softer appearance. Furthermore, halos appear around
strong highlights, visible for Bokeh. It can be used to drive attention
as well as to define a general mood (Figure 5(right)).

Curvature of Field (COF) COF projects a focal plane to a curved
image. Rays at a large angle see the lens as if it had a smaller
diameter but higher power. The image of offaxis points moves closer
to the lens. This makes images clearly focused in the center but
lose focus towards the boundary. Such curved image surfaces are
common in many real lenses, especially telescopes. Compared to
spherical aberration, the blur is more anisotropic and is often used
to suggest the past, dreams, or still velocity.

Chromatic Aberration The refraction index of a lens usually de-
pends on the wavelength of the incoming light. Often invisible, it
can result in colored halos around objects (Figure 5(left)). While
spherical aberration and COF are a direct consequence of our lens
model, chromatic aberration needs to be simulated explicitly. We
use an empirical equation proposed by Sellmeier [1871]:

B BN B B
n(d) = \/1+ Mo T Tae—a

where B; and C; are material coefficients, A the wavelength, and n
the refractive index. This model, originally for a thin lens, allows
us to benefit from large material databases. Physical (e.g., Borosil-
icate crown glass (BK7), a typical lens material) or non-physical
results are possible (Figure 5). To maintain real-time performance,
we do not employ a full spectral evaluation. Instead, we separately

ACM Transactions on Graphics, Vol. 29, No. 4, Article 65, Publication date: July 2010.

BK47:
B1=1.039 B2=0.232
B3=1.010 C1=0.006
C2=0.020 C3=103.6

Figure 5: Physically-based aberrations with our approach. Chro-
matic (left, for the BK47 glass) and spherical aberration (right).

compute lens rays only for the three dominant wavelengths of the
RGB channels, by assuming 650, 510, and 475 nm, respectively.
Although not capturing the full spectrum, the approach usually leads
to convincing results. Other recent work (e.g., scattering simulations
in the human eye [Ritschel et al. 2009]) shows that such approx-
imations can result in very faithful simulations. If needed, more
wavelength samples could be used to improve the approximation.

5 Controlling Focus and Lens Effects

This section presents our algorithm to intuitively control lens blur.
‘We present algorithms for physically-based lenses, but also extend
DOF beyond the physical definition by allowing varying lens param-
eters for each image point. In this context, we also allow control
over the previously presented aberrations for abstraction purposes.

User Interface As previously mentioned, controlled focus allows
us to guide an observer to certain locations, emphasize objects, or
create a special mood. For example, it might be of interest to al-
ways keep an object defocused in order not to reveal any details,
while other elements of the scene stay constantly in focus. Chang-
ing the focal distance manually for each frame is a tedious process.
In our interface, a user controls DOF at a high level by attaching
attributes, like focused or defocused, directly to the scene and by
keyframing them over time. A click on the screen defines a focus
point. Internally, we store its barycentric coordinates and triangle
to support animated geometry. For each focus point one can spec-
ify DOF parameters (most prominently, the amount of blur) and
influence weights. Based on this input, the camera parameters are
optimized to reflect the intended definitions for the current view.
Per default, we exclude constraints outside the view frustum, but
allow an artist to specify otherwise. We also increase the influ-
ence of nearer constraints to avoid ambiguities and use temporal
interpolation to achieve temporal coherence.

5.1 Controlling Focus for Standard Lens Models

Here, we describe our intuitive focus control for common lenses.

Thin Lens Given a focal length F', the focal distance d is defined
by the distance between image plane and lens: w = Fdy/(ds — F)
for dy > F' [Potmesil and Chakravarty 1981]. We use a single focus
point in the scene to let the user define the focal distance.

Spherical Thick Lens Spherical lenses are controlled similarly.
The focal length can be computed via the lens maker’s equation:
+~(n—1) 1% - %2 + 7(:;{1 2;) , where Ry and R (negative)

are the lens radii, ¢ the thickness, and n the refractive index.

Tilt-Shift Photography For tilt-shift photography a camera’s im-
age plane is tilted with respect to the lens, hereby tilting the focal

plane. The effects are interesting (Figure 1(b)), but the nonintuitive
relation between tilt and focus can make the device difficult to op-
erate, especially for animated scenes. On the contrary, we make
the process simple to control by deriving a least-square focal plane
from focus points. The focal plane is automatically transformed
into an image plane tilt [Merklinger 1996]. Care is needed when
the focal plane aligns with the view vector. We avoid this physical
impossibility by limiting the plane normal.

5.2 Expressive Focus Control

Our system also allows for non-physically-based local parameter
definitions, while standard lens models are restricted to global defini-
tions. For artistic purposes, this is particularly interesting to enhance
certain areas. For example, locality is important when different em-
phasis is to be put on objects residing at the same distance. The DOF
itself is controlled via a focal surface that continuously interpolates
the focal-depth constraints in screen space as well as the DOF extent
in form of a single scalar value. Temporal smoothness is achieved
again by interpolating the surface and DOF over time.

Focal Surface and DOF Interpolation The focal surface defini-
tion is based on a moving-least squares (MLS) solution. Each focal
point defines kernel functions around it. In practice we use weights
of al/4?, where d is defined in terms of screen space distance for
each focal point. For a given pixel we minimize the error function
by weighting desired parameters at focus points according to these
weight functions. The importance weight, o, gives finer control over
the strength of the influence region of each focus point, since the
best-fit surface is not necessarily identical to the designer’s intention.
[controls the range affected by the nearby control points; as 5
increases, local behavior becomes narrower. In the limit, disconti-
nuities could be reintroduced, but 5 = 2—4 works well in practice.
We experimented with different kernels and got comparable results.
It is important to handle singularities at d = 0 to ensure a perfect
interpolation of the control point itself. The surface is evaluated
entirely on the GPU, enabling us to define per-pixel parameters.

Our system also supports focus points that indicate out-of-focus
regions. A user simply specifies the offset with respect to a potential
focal plane to achieve controlled defocus. In practice, this interaction
is intuitive, but problems occur when such constraints overlap. In
order to avoid problems, we reduce the influence of kernel functions
according to their distance and slowly fade out their contribution
when they become invisible. As before, this can be counteracted and
an artist can keyframe the behavior differently. Our system delivers
immediate feedback which eases such interaction.

5.3 Expressive Aberration Effects

We could influence aberrations via the lens shape, but, in practice,
this requires much expertise and is far from an intuitive framework.
Instead, for expressive rendering, we decided to use a less accurate
simulation with more intuitive control parameters.

Spherical aberration is caused by varying distances that light travels
inside the lens. We often observe that rays are bent more strongly on
the periphery of the lens than its center. An intuitively controllable
approximation is to modify the refractive power via a spline defini-
tion. Further, spherical aberration is most valuable for Bokeh effects
and we provide the possibility to directly weight rays differently to
influence the shape of Bokeh.

Curvature of field appears because the focal plane is associated to
a curved image plane. In other words, if the sensors were on this
image plane, the resulting rendering of an object on the focal plane
would be sharp. To simulate this effect, we can let the user define
an offset surface for the image plane. Again, we use a smooth MLS

Real-Time Lens Blur Effects and Focus Control . 65:5

Figure 6: Examples of expressive aberration effects. Spherical aber-
ration for Bokeh highlights (left) and curvature of field combined
with a tilt-shift lens focusing on the table (right).

interpolation and write the resulting deformation in a buffer. As
all points on this surface share the same focal distance, the lens
appears to have a different focal length for each point. We adapt rays
traversing this surface accordingly to take this effect into account.

Chromatic aberration can be controlled via varying refraction indices
for the RGB channels which is intuitive and remains unchanged.

We found that these definitions allow us to easily control lens effects.
Figure 6 and the video demonstrate how parameters can be intuitively
adjusted to achieve complex appearances.

6 Results and Discussion

Performance Our system was implemented using DX10 on a Pen-
tium Core2Quad 2.83 GHz machine. We evaluated performance in
terms of geometry and GPU classes (Table 1). Despite the high scene
complexity (the smallest has 98K triangles), our method resulted
in high performance ranging between 100 and 30 Hz on a standard
graphics card (NVIDIA GeForce GTX285). The tests with different
GPU classes indicate a roughly linear scalability of our algorithm
with respect to the number of stream processors (GTX285/8800).
Our approach benefits from texture bandwidth, illustrated by the
9500GT which has a proportionally lower bandwidth. We compared
our results to a recent algorithm (MS) [Lee et al. 2009a] and a ref-
erence method (REF) [Haeberli and Akeley 1990]. Both simulate
a thin-lens model which is the only available choice for a real-time
comparison. MS required 16 layers to avoid artifacts in the scenes,
but we added timings for 8 layers as well. For the latter, artifacts
were readily visible, while our method remained artifact-free using
only 4 layers. Further, we achieve sub-linear performance with
respect to the number of layers because N-Buffers perform very
efficient skipping and intersection tests for the sparse later layers.
Typically, for 8 layers, the ray tracing cost of the second four repre-
sents only 20-30%. In the same way, ray tracing generally scales
slightly sub-linearly with respect to the sampling rate. For the geo-
metric lens model a roughly constant overhead (= 10 ms for 100
rays) is added because we need to compute the lens rays for each
pixel, which is more complex than for a thin lens.

To investigate the behavior of our method when facing a high ren-
dering costs, we used a 0.5M and 1.5M triangle scene and applied
different complex shaders to achieve the same base-rendering cost
of 25 ms to produce a rendering at a resolution of 1024 x 768 pixels.
For the 1.5M scene, computing the layered scene representation and
N-Buffers took 74 ms. This process is less expensive than a naive
4-time rendering due to early-empty-pixel skipping in later layers
during the depth peeling. The ray tracing is independent of the
base-rendering cost and stayed cheap (4/7 ms for 32/64 rays). The
timings for the 0.5M scene were similar (preprocessing: 75 ms, ray
tracing:5/8 ms). This observation indicates that deferred shading (a
common technique for games that extracts surface properties before
applying the shaders) would reduce the overall cost drastically.

Our approach is well-suited for deferred shading because our mem-

ACM Transactions on Graphics, Vol. 29, No. 4, Article 65, Publication date: July 2010.

65:6 . S. Leeetal.
PRE (Depth peeling+N-Buffer) + RT (raytracing) = TOTAL MS (8/16 layers) REF PSNR (db)/SSIM
285GTX (240 SP) 8800GTX (128 SP) 9500GT (32 SP) 285GTX 285GTX
Town (98K tri.) 4+6=10 6+8=14 16 +79=95 15/26 (1.5/2.6) 125 (12.5) 34.8/0.98
Angels (407K tri.) T+17=24 11+29=40 20 + 144 = 164 75/122 (3.1/5.1) 213 (8.9) 36.9/0.97
Dragon (935K tri.) 16 + 15=31 24 +33=57 40 + 169 =209 81/125 (2.6/4.0) 641 (20.7) 35.0/0.98

Table 1: Comparison of the rendering cost (in ms) of our system (100 lens rays, 4 layers, and 800 600) with a competitor (MS) [Lee et al.
2009a] and the reference (REF) [Haeberli and Akeley 1990] with speedup factors given in parentheses. SP denotes the number of stream
processors in GPUs. A quality measure is given with respect to REF by evaluating PSNR and SSIM [Wang et al. 2004].

ory consumption is much lower compared to [Lee et al. 2009a].
In practice, our modified peeling resulted at most in seven layers
for realistic scenes (less than half of depth peeling stopping at 5%
pixel occupancy). For 1024 x768 pixels, we use only 16-32 MB
instead of 72-92 MB [Lee et al. 2009a] (details are provided in the
supplementary material).

Quality The image quality of our method is similar to reference
results shown by the signal-to-noise ratio (PSNR) and the structural
similarity (SSIM) [Wang et al. 2004] (see Table 1 and Figure 7).

Aliasing and ghosting arise when employing an insufficient number
of rays. We can improve the perceived quality using varying ray-
sampling patterns (jittering) for each pixel [Lee et al. 2009a]. This
solution is incompatible with accumulation buffer methods. Figure 7
illustrates the quality/sampling-rate tradeoff. For 750 samples, our
solution still achieved interactive rates for a million-triangle scene
and gave results indistinguishable to 10%-rays even for a 1002-blur
kernel. Such a kernel is much larger than what most real-time
approaches apply. Figures in the paper used 100 samples.

Figure 7: Influence of the number of lens rays (N)

To show the expressive spectrum of our system, we mimicked spe-
cialized lenses like LensBaby™ or Spiratone Portragon. The effec-
tiveness of our interface is best demonstrated in the accompanying
video. In particular, instant feedback is crucial to judge where supple-
mentary constraints are needed. Dramatic effects can be achieved in
a few clicks and the results look convincing, even under animation.

Discussion One key aspect of our method is the extended-umbra
peeling which exploits the sample-based ambiguity between image
and geometric representations. It is efficient for nearby and far-away
pixels. For far-away pixels, the relative parallax is small and the
resulting umbra is large in world space. E.g., the pixel’s world-space
extent can be large enough with respect to the lens, that no lens
ray can access any further layer behind it. In the extreme case of a
lens that degenerates to a point, our method derives a single depth

ACM Transactions on Graphics, Vol. 29, No. 4, Article 65, Publication date: July 2010.

layer. Independent of the scene, or the far plane, our extended-umbra
peeling results always in a finite maximal amount of layers.

Our layers allow us to produce an artifact-free rendering in the sense
that rays do not miss surfaces. Such property cannot be assured
by other peeling methods capturing a constant amount of layers.
The major difference to an accumulation buffer method (that moves
the camera) is that its surface sampling changes for each view. In
practice, this difference is subtle because for strong out-of-focus
effect, the blur kernel is large. These advantages make our strategy
also interesting for offline computation in previsualization systems.

Combining our approach with single-pass depth peeling (e.g., the
AMD DirectX11 example of order-independent transparency) is an
interesting avenue for future work. However, currently, such single-
pass implementations report limited performance (e.g., 30 fps on
an AMD HD5670 card), even inferior to our total execution time
for 1M triangles. Further, such methods store all layers, and thus,
the raytracing is costly. Our findings could be used as a postprocess
to reduce the surface samples. Nevertheless, this does not limit
the initial memory consumption. Figure 8 depicts a scene where
single pixels contain up to 100 layers and our solution produces the
correct result using only four layers. The high memory consumption
of single-pass peeling also hinders deferred shading and incoming
fragments are shaded directly.

In comparison to the single-pass decomposition of [Lee et al. 2009a],
our depth peeling can be slower, but our ray tracing is more cache-
efficient, treats multiple layers in parallel, and uses less and more-
predictable arithmetic operations. In consequence, we achieve equiv-
alent or better quality with a strong speedup. We also do not miss
hidden fragments within layers and avoid temporal popping for ge-
ometry crossing many layers. Further, four layers are usually enough
for near-accurate results. This is a very important feature and is not
valid for uniform decompositions [Lee et al. 2009a].

Reference

Our method (4 layers)

Figure 8: Our method handles complex cases and visibility relations

7 Conclusion and Future Work

We presented a novel real-time lens-blur rendering system exceeding
previous methods in performance and quality, and introduced the
first real-time system that manages many lens aberration effects.
The latter are an important component for artistic photography and,
consequently, we presented a simple system to control depth-of-field
blur. We further extended this control to non-physical (but plausible)
results yet give large possibilities to designers.

The future work will be focused on extending our user interface
to further facilitate interaction (e.g., painting metaphors). Also, in

theory, temporal interpolation for animation is already possible but
there is a new possibility to integrate an event-driven control. Such a
system could be useful in a game to trigger particular focus elements
and to test how well users can be guided via that focus design.

We thank the reviewers, L. Baboud, and K. Subr for support and the Stanford
3D Scanning Repository, AIM @ Shape, the3DStudio.com, TurboSquid, and
Keenan Crane for the 3D models. This work was partly funded by the Intel
Visual Computing Institute at Saarland University.

References

BARSKY, B. A., AND PASZTOR, E. 2004. Rendering skewed
plane of sharp focus and associated depth of field. In SIGGRAPH
Sketches, 92.

BARSKY, B., BARGTEIL, A., GARCIA, D., AND KLEIN, S. 2002.
Introducing vision-realistic rendering. In Proc. Eurographics
Rendering Workshop, 26-28.

BARSKY, B., TOBIAS, M., CHU, D., AND HORN, D. 2005. Elimi-
nation of artifacts due to occlusion and discretization problems in
image space blurring techniques. Graphical Models 67, 584-599.

BERTALMIO, M., FORT, P., AND SANCHEZ-CRESPO, D. 2004.
Real-time, accurate depth of field using anisotropic diffusion and
programmable graphics cards. In Proc. 3DPVT, 767-773.

BOUSSEAU, A., 2009. Non-linear aperture for stylized depth of
field. SIGGRAPH 2009 - Technical talk.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed
ray tracing. Computer Graphics 18, 3, 137-145.

DECORET, X. 2005. N-buffers for efficient depth map query. In
Proc. Eurographics, 393-400.

DEMERS, J. 2004. Depth of field: A survey of techniques. In GPU
Gems, R. Fernando, Ed. Addison-Wesley, ch. 23, 375-390.

EVERITT, C. 2001. Interactive order-independent transparency.
White paper, nVIDIA 2, 6, 7.

GLEICHER, M., AND WITKIN, A. P. 1992. Through-the-lens
camera control. In SIGGRAPH, 331-340.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
Hardware support for high-quality rendering. Proc. ACM SIG-
GRAPH, 309-318.

HAMMON, JR., E. 2007. Practical post-process depth of field. In
GPU Gems 3, H. Nguyen, Ed. Addison-Wesley, ch. 28, 583-606.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA, A. 2005. Fast summed-area table generation and
its applications. Computer Graphics Forum 24, 3, 547-556.

KASsS, M., LEFOHN, A., AND OWENS, J. 2006. Interactive depth
of field using simulated diffusion on a GPU. Tech. rep., Pixar.

KoLB, C., MITCHELL, D., AND HANRAHAN, P. 1995. A realistic
camera model for computer graphics. In Proc. ACM SIGGRAPH,
317-324.

KoSARA, R., MIKSCH, S., AND HAUSER, H. 2001. Semantic
depth of field. In Proc. IEEE Information Visualization, 97-104.

KOSLOFF, T., AND BARSKY, B. 2007. An algorithm for render-
ing generalized depth of field effects based on simulated heat
diffusion. In Proc. ICCSA, 1124-1140.

KoOsSLOFF, T., TAO, M., AND BARSKY, B. 2009. Depth of field
postprocessing for layered scenes using constant-time rectangle
spreading. In Proc. Graphics Interface, 39-46.

Real-Time Lens Blur Effects and Focus Control . 65:7

KRAUS, M., AND STRENGERT, M. 2007. Depth-of-field rendering
by pyramidal image processing. In Proc. Eurographics, 645-654.

LEE, S., KiM, G. J., AND CHoOI, S. 2008. Real-time depth-of-field
rendering using splatting on per-pixel layers. Computer Graphics
Forum 27,7, 1955-1962.

LEE, S., EISEMANN, E., AND SEIDEL, H.-P. 2009. Depth-of-Field
Rendering with Multiview Synthesis. ACM Trans. Graph. 28, 5,
134:1-6.

LEE, S., KiM, G. J., AND CHOI, S. 2009. Real-time depth-of-field
rendering using anisotropically filtered mipmap interpolation.
IEEE Trans. Vis. and Computer Graphics 15, 3, 453-464.

Liu, F., HUANG, M. C., L1u, X. H., AND WU, E. H. 2009. Single
pass depth peeling via cuda rasterizer. In SIGGRAPH Talks.

MATHER, G. 1996. Image blur as a pictorial depth cue. Biological
Sciences 263, 1367, 169-172.

MERKLINGER, H. M. 1996. FOCUSING the VIEW CAMERA.
Nova Scotia.

PATOW, G., AND PUEYO, X. 2003. A survey of inverse rendering
problems. Computer Graphics Forum 22, 4, 663—687.

PELLACINI, F., AND LAWRENCE, J. 2007. AppWand: editing
measured materials using appearance-driven optimization. ACM
Trans. Graph. 26, 3, 54.

PELLACINI, F., TOLE, P., AND GREENBERG, D. P. 2002. A user
interface for interactive cinematic shadow design. In Proc. ACM
SIGGRAPH, 563-566.

POLICARPO, F., AND OLIVEIRA, M. M. 2006. Relief mapping of
non-height-field surface details. In Proc. I3D, 55-62.

POTMESIL, M., AND CHAKRAVARTY, I. 1981. A lens and aper-
ture camera model for synthetic image generation. Proc. ACM
SIGGRAPH 15, 3, 297-305.

POULIN, P., AND FOURNIER, A. 1992. Lights from highlights and
shadows. In SI3D, 31-38.

RIGUER, G., TATARCHUK, N., AND ISIDORO, J. 2003. Real-
time depth of field simulation. In ShaderX>, W. F. Engel, Ed.
Wordware, ch. 4, 529-556.

RITSCHEL, T., IHRKE, M., FRISVAD, J. R., COPPENS, J.,
MYSzZKOWSKI, K., AND SEIDEL, H.-P. 2009. Temporal Glare:
Real-Time Dynamic Simulation of the Scattering in the Human
Eye. In Proc. Eurographics.

ROKITA, P. 1996. Generating depth-of-field effects in virtual reality
applications. IEEE Comp. Graph. and its App. 16, 2, 18-21.

SCHOENEMAN, C., DORSEY, J., SMITS, B., ARvVO, J., AND
GREENBERG, D. 1993. Painting with light. In Proc. ACM
SIGGRAPH, 143-146.

SELLMEIER, W. 1871. Zur Erkldrung der abnormen Farbenfolge im
Spectrum einiger Substanzen. Annalen der Physik und Chemie
219,272-282.

SMITH, W. 2004. Modern Lens Design. McGraw-Hill Professional.

WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND SIMONCELLI,
E. P. 2004. Image quality assessment: From error visibility to
structural similarity. /EEE Trans. Image Proc. 13, 4, 600-612.

Zuou, T., CHEN, J., AND PULLEN, M. 2007. Accurate depth of
field simulation in real time. Computer Graphics Forum 26, 1.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 65, Publication date: July 2010.

